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We propose a nonuniform deployment strategy of a group of homogeneous autonomous agents in harbor-like environments. High
value units berthed in the area need to be secured against external attacks. Defenders deployed in the area are expected to monitor,
intercept, engage, and neutralize threats. In the framework of decentralized coordinated multi-agent systems, we model and simulate
the optimal deployment of a group of mobile autonomous agents that accounts for a risk map of the area and the optimal trajectories
that minimize the energy consumed to intercept a threat in a given area of interest. Theoretical results are numerically illustrated
through simulations in a realistic harbor protection scenario.
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1. Introduction

Cooperative missions with mobile sensor networks are be-
ing studied extensively from algorithmic to implementation
aspects. Mobility, coupled with estimation, data fusion, and
motion control algorithms, enables groups of mobile agents
to coordinate in real-time to achieve specific objectives.
These ideas have been applied to a variety of domains,
including threat tracking [1–13], formation and coverage
control [6, 14–25], rendezvous and deployment [26], envi-
ronmental tracking and monitoring [27–30], and resource
allocation problems with heterogeneous entities [31]. Com-
prehensive reviews can be found in [32–34], and several
technical aspects are discussed in the book [35]. Here, we
extend some of these ideas to securing harbors and ports
against underwater threats, which is a problem with many
opened challenges [36]. Securing ports against threats is es-
pecially acute when they are located near strategic choke
points, such as the Strait of Hormuz, the Strait of Gibral-
tar, the Suez Canal, and the Panama Canal [36]. Among
the most significant challenges in harbor protection study is
that the visibility of both the attackers and agents is likely
to be poor during their mission. In many realistic scenar-
ios, sensory measurements are noisy and communication in
the underwater domain is intermittent, leading to model-
ing frameworks similar to the one presented in [37] to study
synchronization of intermittently coupled continuous-time
nonlinear oscillators, with mean square convergence rates
obtained in a discrete-time setting in [38, 39], and several
extensions that include stochastic consensus protocols ad-

dressed in [40–42], and random link failures [43,44]. Here, in
order to focus on the optimal deployment and interception
with non-uniform risk, we assume that full communication
exists among agents at all times, leaving the treatment of
underlying time-varying communication networks to cur-
rent and future work. This work contributes to the devel-
opment of optimal strategy to deploy mobile autonomous
agents and intercept threats in a harbor–like environment
assuming that agents coordinate in a decentralized fash-
ion by sharing information between them, without the in-
tervention of an external unit. The area of deployment is
assumed to be small enough so that information sharing
capabilities allow each agent to communicate with the oth-
ers in the group. Specifically, the main contributions of this
paper are a set of possible solutions to address the following
questions:

i) How and where to deploy agents throughout the har-
bor so that the likelihood of defending against threats
is maximized?

ii) Given the agent’s safe stand-off distance, how to inter-
cept a threat in pre-specified reaction time while mini-
mizing agent’s actuator energy?

Deployment strategies developed here are of general in-
terest in the broad field of cooperative missions with mobile
multi-agent systems. However, they are illustrated herein
for a harbor defence system taking into consideration a
realistic harbor geometry, so that the abstraction of the
formulation is immediately translated into suitable scenar-
ios that facilitate the understanding of the applicability of
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the proposed methods and solutions. It is assumed that the
threats are initially outside the harbor’s outermost bound-
ary and the agents are placed closed to sensitive areas to be
protected. The defence system is structured in two stages,
where the first stage consists of deploying multiple mobile
agents based on the risk distribution of the harbor. The
risk zones inside the harbor are assumed to be known a
priori, and they are encoded by a risk distribution with
eventual non-uniformities. The area is then spatially par-
titioned according to Voronoi partitioning technique such
that each Voronoi cell is assigned to a single agent. Like
that, agents move in a fully decentralized fashion in the
sense that each agent receives the position information from
all other agents while employing its actions independently.
Given the maximum sensor range, we determine the mini-
mum number agents that needs to be deployed throughout
the harbor. In the second stage, each agent will intercept
the threats inside its own Voronoi cell taking into consid-
eration its safe stand-off distance.

Yip et al. in [45] focused on formulating a stochas-
tic model of the effectiveness of a harbor defence system
against underwater threats. Their model is based on the
assumption that only one agent is deployed against a single
threat inside the harbor. In addition, the interception tech-
nique described in [45] assumes that the threat’s trajectory
is simply a straight line, which may be a too restrictive
or non realistic hypothesis to model relevant real scenar-
ios. Several research works have been conducted to protect
harbors (civilian and military) and ports against underwa-
ter threats, see [46–51], for example, and some references
therein. Authors in [52] presented a system of organic sen-
sors coupled with one or more agents to protect high-value
assets, where fuzzy logic algorithms were developed to de-
termine priorities of both underwater and surface threats to
be neutralized. However, a central control unit is required
for their scenario to operate in real-time. Nevertheless, the
nonuniform deployment of agents based on harbor’s risk
level are not considered in the literature to date. It turns
out that the optimal deployment of agents and intercepting
threats with minimum actuating energy are still among the
main challenges, which we address in this paper. It is im-
portant to point out the fact that the proposed deployment
strategy in a harbor defence system can be applied to sce-
narios where multiple defenders need to neutralize multiple
threats. The work described herein exploits the concepts of
multi-agent systems [53], the optimal discrete-time control
and estimation theory [54].

The rest of the paper is outlined as follows. Sec-
tion 2 gives the problem description and assumptions made
throughout the paper including a high-level architecture of
a harbor protection scenario. Section 3 details how to op-
timally deploy a set of homogeneous agents inside the har-
bor’s inner reaction zone while maximizing coverage metric
taking into account the risk maps. Section 4 describes how
the agents optimally intercept a threat while minimizing
their actuating energy. Section 5 presents the main theo-
retical results through computer simulations that encode
the modelling assumptions. Section 6 gives the summary,

conclusions, and potential future research avenues.

2. Assumptions, Harbor Architecture, and
Modeling

Throughout this paper, scalar quantities will be denoted by
lower-case letters, while vectors will be denoted by lower-
case bold letters. Upper-case bold letters will denote matri-
ces. For any positive integer n, Rn denotes the Euclidean
space.

2.1. Assumptions

The current work relies on the following preliminary as-
sumptions:

• Agents and threats operate in a 2D submerged
workspace in the harbor.

• Agents can perfectly (without noise) communicate
among them and each agent is responsible to in-
tercept threats in its own zone of the harbor.

• Agents can estimate their position and velocity
without noise.

• The harbor infrastructure is stationary.

The terms agent, interceptor, and defender will be used
interchangeably throughout this paper.

2.2. Harbor System Architecture

A high-level architecture of a harbor defence system is de-
picted in Fig. 1. The shaded with zigzag pattern is the high
value unit, that is located at the left of the harbor area. The
presence of the high value unit introduces non-uniformity in
the risk zone, and therefore it allows us to treat this impor-
tant case. Sensors (sonars, for example) are mounted on the
outermost trip-wire boundary. The purpose of the trip-wire
sensors is to detect and track attackers while they are in
the detect and track zones (see Fig. 1). In the scenario illus-
trated in Fig. 1, four agents are deployed inside the harbor
area (inner reaction zone). As can be seen, the threats may
enter from several directions (underwater or sideways, for
instance) around the harbor. As such, the risk probability
(which depends on the frequency of attacks by the threats)
is also nonuniform. We consider a decentralized architec-
ture in which there is no central control unit, as opposed
to the scenario presented in [52]. Agents’ optimal configu-
rations in the inner reaction zone maximize a nonuniform
coverage metric. In the presence of threats inside the inner
reaction zone, each agent intercepts the threats that are
inside its own Voronoi cell in the inner reaction zone of the
harbor.

2.3. Motion Models of Agents and Targets

We consider a group of n homogeneous autonomous agents.
Let γ and k denote the discrete sampling time interval and
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Fig. 1. Harbor protection system architecture.

discrete time index, respectively, characterizing the evolu-
tion of the agents in discrete time. The discrete time motion
model of the ith, i ∈ {1, 2, . . . , n} ≡ I, agent is given by
the following set of equations that describe the linearized
kinematics of an accelerated material particle

ṗ[i] = u[i] (1a)

v̇[i] = α[i]. (1b)

where p[i](t) =
[
x[i](t), y[i](t)

]T
is the 2D position, v[i] =[

v
[i]
x (t), v

[i]
y (t)

]T
is the velocity at time t ≥ 0, and u[i] and

α[i] are the vectors of velocity and acceleration inputs, re-
spectively. The kinematic model (1) approximates the 2D
trajectory of the ith agent when it is required for agents
to converge to a desired position with velocity determined
by (1b).Similar to the agent model (1), we assume that
each threat moves according to the linearized accelerated
kinematics

ṡ = u (2a)

v̇ = α (2b)

where s and v are the threat’s 2D position and velocity
vectors, respectively, with the corresponding 2D actuating
inputs u and α.

3. Deployment of Agents

The agents are distributed in optimal locations inside the
harbor, where the optimality is defined with respect to a

generalized coverage metric that include the nonuniform
risk map and the motion of the agents. The purpose of
this section is to present motion coordination algorithms
to optimally place agents. For that, we formally define the
network model for the agents and the Voronoi tessellation
of the inner reaction zone of the harbor.

3.1. Harbor Partitioning and Network Model

Let p = (p[1], . . . ,p[n]) be the collection of 2D positions of
agents’ network in the 2D inner reaction zone, Q ⊂ R

2, of
the harbor. For optimal spatial placements and area cover-
age, agents partition the area to be covered using the gener-
alized Voronoi partitioning technique [31,55]. The Voronoi
partition of the harbor is denoted by

V(p) = (V1(p), . . . ,Vn(p)),

where the ith Voronoi cell is defined by

Vi(p) = {q ∈ Q : f(ri) ≥ f(rj), ∀j ∈ I \ {i}} ,
∀i ∈ I, ri = ‖q− p[i]‖ is the Euclidean distance, and f(·) is
the sensor performance function that will be defined in sub-
section 3.3. Therefore, the generators of the Voronoi par-
tition are the states (p[1], . . . ,p[n]). For simplicity, Vi(p)
will be denoted by Vi throughout the paper. Intuitively,
Vi represents an area where each point is better sensed by
the ith agent than to all other agents. Interested readers
are referred to [55] for the comprehensive study on Voronoi
partitioning and its applications.
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A network of agents in the inner reaction zone Q ⊂ R
2,

is defined by the tuple (I,R, E), where R ≡ set of agents

≡ {Ri
}
i∈I =

{(
P [i],U i,P [i]

0 , f [i]
)}

i∈I
, with P [i] ⊂ R

2

is the state space of the ith agent, U i is the set of con-

trol actions (accelerations) that define the trajectories, P [i]
0

is the set of initial states, and f [i] is the physical state
transition function of the ith agent. The communication
edge map is given by E :

∏n
i=1 P [i] �→ I × I. The phys-

ical state and the initial physical state of the ith agent

are p[i] ∈ P [i] and p
[i]
0 ∈ P [i]

0 , respectively. We refer to

p = (p[1], . . . ,p[n]) ∈ ∏n
i=1 P [i] as a state of the agents’

network in the harbor’s inner reaction zone.
Note that the map p �→ (I, E(p)) models the topology

of the communication network among the agents. Hence,
(I, E(p)) denotes the communication graph. Two agents at
locations p[i] and p[j] communicate if and only if the pair
(i, j) ∈ E(p). The informal description of our deployment
strategy for agents inside the harbor can be schematized as
follows:

Step 0: Set up a communication protocol, such as agents
will communicate with each other at discrete time in-
stants during their entire mission. The ith agent per-
forms Step 1 and Step 2 for each communication round:
Step 1: It broadcasts its own message (2D position and
unique ID) to all other agents and receives the set of
messages from all other agents.
Step 2: It updates its logical state (determining geomet-
ric centers, for example), which will be detailed later, of
its own Voronoi region Vi inside the harbor.
Step 3: It updates its physical state p[i] by moving to-
wards the geometric center of Vi before the next com-
munication round.

3.2. Modeling Risk Zone

Note that there might be different risk zones through which
threats are likely to attack. Inspired by [56], we define risk
zones in the harbor as the area where threats frequently en-
ter to damage the high value unit. Following [17], we define
the risk function φ : P −→ R

+
0 as

φ(q) = e
− 1

2

{
(qx−q̄x)2

σ2
x

+
(qy−q̄y)2

σ2
y

}
, (3)

where q = [qx, qy]
T ∈ Q is the position vector. Model (3)

defines the risk zone centered around the location (q̄x, q̄y)
with standard deviations σx and σy along the X-axis and
Y -axis, respectively. Note that the highest risk is at the lo-
cation (q̄x, q̄y). Since the risk function is nonuniform, this
method leads to nonuniform distribution of agents, that are
more densely deployed in areas with higher risk. The mass
Mφ(Vi) and the centroid Cφ(Vi) of the Voronoi cell Vi are

given by

Mφ(Vi) =

∫
Vi

φ(q)dΩ, (4)

Cφ(Vi) =
1

Mφ(Vi)

∫
Vi

qφ(q)dΩ, (5)

respectively, with dΩ being the area element.

3.3. Nonuniform Deployment

Motivated by the locational optimization problem [55], we
consider a generalized total coverage metric in terms of to-
tal power (signal strength) received by agents

H(p,V) =
n∑

i=1

∫
Vi

φ(q)f(ri)dΩ (6)

where ri = ‖q− p[i]‖, ∀q ∈ Vi. Note that f(·) is the agent’s
sensor performance defined by

f(ri) = k exp(−βr2i )

with k > 0 and β > 0. The metric (6) encodes how rich
the coverage provided by the agents’ network in Q is. In
other words, higher H implies that the corresponding set
of agents achieves better coverage of the area Q. Commonly
the Voronoi tessellation problem with mobile generators is
formulated by modeling the dynamics of the agents as sim-
ple integrators, and therefore the coverage metric can be
extremized by the well–known Lloyd algorithm [57]. Here,
by considering accelerated particles taking into account the
acceleration inputs, we want to maximize the coverage met-
ric H as defined in (6), while the speeds of agents gov-
erned by (1b) reach zero at the optimal configurations of
agents that eventually maximize the coverage. Note, how-
ever, that agents may reach optimal configurations before
the acceleration inputs and velocity of the ith agent decay
to zero as t → ∞. An appropriate feedback law, defined in
equation (11), for each of the input vectors in (1) dictates
that each agent moves towards its generalized centroid with
speed greater than the speed generated by the acceleration
inputs. This guarantees that the system dynamics does not
violate basic physics principles encoded by Newton’s second
law.

Using the results presented in [31, 53], the derivative
of Hi in (6) with respect of p[i] yields

∂H [i]

∂p[i]
= Mφ̃(Vi)

(
Cφ̃(Vi)− p[i]

)
, (7)

where φ̃(q,p[i]) = −2φ(q)
(
∂f(ri)/∂(r

2
i )
)
,

Mφ̃(Vi) =

∫
Vi

φ̃(q,p[i])dΩ, (8)

Cφ̃(Vi) =
1

Mφ̃(Vi)

∫
Vi

qφ̃(q,p[i])dΩ. (9)
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It is worth pointing out that φ̃(q,p[i]) can be interpreted
as modified risk levels that includes the agents’ sensor per-
formance in the harbor region Vi, which is occupied by
the ith agent and its corresponding mass and centroid are
Mφ̃(Vi) and Cφ̃(Vi), respectively. From the above defini-

tion it follows that φ̃ > 0 since f is strictly decreasing in
its argument.

The standard Lloyd descent algorithm [58] states that
a necessary and sufficient condition for the agents to be
in the optimal configuration that maximizes the cover-
age metric (6) (with constant density φ) is to asymptot-
ically converge to the centroids of the Voronoi tessella-
tion, i.e., P = {p[i](t)|p[i](t) = Cφ(Vi)(t)} as t → ∞.
Hence, if the agents (with kinematics (1)) are asymptot-
ically deployed to the corresponding centroids, Cφ̃(Vi), of
the Voronoi tessellation, then the coverage metric is maxi-
mized as it is clear from (7) and therefore the configuration
is optimal. Feedback laws that map to optimal trajecto-
ries of the closed loop system associated to the dynamics
(1) are given in the following proposition, by showing that
these trajectories belong to the largest invariant set of a
quadratic Lyapunov function.

Let κ and μ2 be positive constants. Before defining
the feedback laws for the agent dynamics (1), we intro-
duce the following assumption which relates tracking er-
rors with respect to Voronoi centroids to actuation speed,
posing that the actuation speed ‖v[i]‖ cannot vanish before
the ith agent converges to the centroid of the corresponding
Voronoi cell.

Assumption 3.1.

‖v[i]‖ ≥ κ̄‖Cφ̃ − p[i]‖, (10)

for some κ̄ > 0.

With the following proposition we give a feedback
law for asymptotic convergence towards the centroids, and
therefore optimal coverage in the sense of (6).

Proposition 3.2. Consider a group of n agents with dy-
namics (1). Let the function H defined in (6).

(1) Suppose that Assumption 10 holds ∀t ≥ 0, the tra-
jectories of the closed–loop system generated by
the feedback laws (assuming Cφ̃ �= p[i])

u[i] = ‖v[i]‖ Cφ̃ − p[i]

‖Cφ̃ − p[i]‖ . (11a)

α[i] = −κv[i], κ > 0. (11b)

asymptotically drive the agents to the generalized
centroids (9) with zero velocity, that is

lim
t→∞p[i](t) = Cφ̃, lim

t→∞v[i] = 0.

(2) The trajectories of the closed loop system asso-
ciated to the feedback law (11) are optimal with
respect to the metric (6).

Proof.Let

J =

n∑
i=1

(
1

2
μ1‖v[i]‖2 + 1

2
μ2‖Cφ̃ − p[i]‖2

)
(12)

be a candidate Lyapunov function (cost function). With
the substitution of feedback laws (11) the time derivative
of the J along the trajectories is given by

J̇ =

n∑
i=1

(
−μ1κ‖v[i]‖2 − μ2‖v[i]‖‖Cφ̃ − p[i]‖

)
(13)

which is negative definite for nonzero positive constants μ1

and μ2. By using 10 the following bound follows

J̇ =

n∑
i=1

(
−μ1κ‖v[i]‖2 − μ2‖v[i]‖‖Cφ̃ − p[i]‖

)

≤
n∑

i=1

(
−μ1κ‖v[i]‖2 − μ2κ̄‖Cφ̃ − p[i]‖2

)
< 0 (14)

for v[i] �= 0 and p[i] �= Cφ̃. By the global LaSalle’s prin-
ciple it follows that the asymptotically all trajectories are
attracted into the largest invariant set of J̇ = 0, which im-
plies point (1) since the largest invariant set includes only
v[i] = 0 and p[i] = Cφ̃.

The proof of point (2) is completed by using a classical
Lloyd algorithm argument, according to which p[i]−Cφ̃ = 0
is the largest invariant set of the coverage metric H that is
maximized along the trajectories associated with the feed-
back law u[i], since such trajectories are proportional to its
gradient ascent directions (see equation (7)).

Note that the chain of inequalities (14) without the

additional condition (10) would imply J̇ = 0 simply for
‖v[i]‖ = 0; therefore at the equilibrium the agents would
not be required to converge to centroids of the Voronoi
cells. Therefore, by requiring through condition (10) that
the actuation velocity does not vanish before convergence
to Voronoi centroids we also guarantee that equilibrium
conditions correspond to optimal coverage.

4. Intercepting Threats

If threats leak through the underwater barrier, it is the
agents’ responsibility to intercept and engage them before
they reach the damage contour of the high value unit. For
that, an agent has to perform the following two major steps
before engaging:

• Estimating threat’s position and velocities.
• Intercept threats.

We consider on board sensory apparatuses taking noisy
measurements of threats’ trajectories at discrete times. Be-
tween two measurement times the threats’ dynamics are ap-
proximated by a linearized stochastic process arising from
the finite difference of (2)

g[k + 1] = Φg[k] + Γ (α[k] + ω[k]) , (15)
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where

Φ =

⎡
⎢⎣
1 0 γ 0
0 1 0 γ
0 0 1 0
0 0 0 1

⎤
⎥⎦ , Γ =

⎡
⎢⎣
γ2/2 0
0 γ2/2
γ 0
0 γ

⎤
⎥⎦ ,

and γ is the sampling time. The state g[k] =

[x[k], y[k], vx[k], vy[k]]
T

includes 2D position and veloc-
ity at time instant k; α[k] = [αx[k], αy[k]] is the 2D ac-
celeration input at time instant k, R2  ω[k] ∼ N (0,Λ)
is the process noise (white, zero-mean Gaussian random
sequence) with Λ being the noise covariance matrix. The
expected values of the threat’s initial state and its error
covariance are given by

E(g[0]) = ĝ[0],

E
[
(g[0]− ĝ0) (g[0]− ĝ0)

T
]
= P[0].

Since the ith interceptor measures the line-of-sight (LOS)
distance between itself and the threat at time instant k,
the measurement model can be written as

z̄[i][k + 1] = h (g[k + 1], ξ) = d[i][k + 1] + ξ[k + 1], (16)

where d[i][k] = [d
[i]
1 [k], . . . , d

[i]
N [k]]T with d

[i]
ι [k] being the

Euclidean distance (LOS) given by

d[i]ι [k + 1] =√
(x[i][k + 1]− xι[k + 1])2 + (y[i][k + 1]− yι[k + 1])2,

N is the number of LOS distance measurements,
ι = 1, . . . , N, (xι[k], yι[k]) is the 2D position of the threat

corresponding to the measured distance d
[i]
ι , and R

N 
ξ[k] ∼ N (0,Σ) is the measurement noise vector with zero-
mean and Σ measurement noise covariance matrix. Hav-
ing multiple line–of–sight (LOS) distance measurements be-
tween the ith interceptor and a threat at time instant k, the
state ĝ[k] of a threat can be estimated using the Extended
Kalman Filter (EKF) algorithm [59], since measurements
are nonlinear functions of the state. The EKF employs the
following two main phases at each time step for the inter-
ceptor to estimate the threat’s state:

(1) A priori estimate (prediction): the threat’s new
state at time step k + 1 is predicted using:

ĝ−[k + 1] = Φĝ+[k] + Γα[k], ĝ+[0] = ĝ[0], (17)

where the subscripts “−” and “+” denote the a
priori and a posteriori estimates, respectively. The
error covariance matrix associated with this pre-
diction is computed by:

P−[k + 1] = ΦP+[k]Φ
T + ΓΛΓT ,

P+[0] = P[0].

(2) A posteriori estimate (correction): the Kalman
gain is computed by

K[k + 1] = P−[k + 1]H̄T [k + 1]

(H̄T [k + 1]P−[k + 1]H̄T [k + 1]+

Σ[k + 1])−1,

where H̄[k+1] is the Jacobian with respect to the
state g of the non-linear measurement model h(·)
in (16). The threat’s state estimate is updated with
current measurements using

ĝ+[k + 1] = ĝ−[k + 1]+

K[k + 1]
(
z̄[i][k + 1]− h(ĝ−[k + 1],0)

)

The error covariance associated with the a poste-
riori estimate is updated by

P+[k + 1] = (I4 −K[k + 1]H[k + 1])P−[k + 1].

where I4 is the four dimensional identity matrix.

We assume that interceptors can estimate their posi-
tion and velocity without noise. Similar to the model (15),
the dynamic model (1) for the ith agent can be approx-
imated in discrete–time by the linearized finite difference
kinematics

�[i][k + 1] = Φ�[i][k] + Γα[i][k], (18)

where the state �[i] =
[
x[i][k], y[i][k], v

[i]
x [k], v

[i]
y [k]

]T
rep-

resents the state vector of 2D position and velocity at time

instant k, and α[i][k] = [α
[i]
x [k], α

[i]
y [k]] being the 2D ac-

celeration input at time instant k. Agents use the threat’s
estimated state ĝ+[k] to intercept, and the evolution of the
error is a tracking measure. By subtracting (17) from (18)
we obtain the following propagated error in discrete time

e
[i]
− [k + 1] = Φe

[i]
+ [k] + γα̃[i][k], (19)

where e
[i]
+ [k] = �[i][k] − ĝ+[k] that is computed through

EKF’s prediction and update steps at each time instant k

and α̃[i][k] = α[i][k]−α[k]. Given the reaction time tr, the
problem is to determine the optimal acceleration history

(u
[i]
x [k], u

[i]
x [k]) (inputs to the agent) such that the agent

can intercept the threat while maintaining its safe stand-off
distance, rw, before the threat reaches the damage contour
around the high value unit. The detail derivations for gen-

erating (u
[i]
x [k], u

[i]
x [k]) are adapted from [60, Ch. 3] and are

given in the Appendix 1.

5. Numerical Results

In this section, we provide a set of computer simulations
to demonstrate the capability of a team of mobile agents
in maximizing the probability of detecting a certain event
in a harbor environment when individuals trajectories are
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generated by the feedback law (11); in this case the per-
formance metric is the nonuniform coverage metric defined
in (6) which can be interpreted as the probability of detect-
ing an event in a given area. In addition, we show how an
agent intercepts a mobile threat within its own region in
pre-specified reaction time while minimizing its actuating
energy; in this case the performance measure is the position
error (generated from the discrete time error model (19))
between an agent and a mobile target, while maintaining a
safe stand-off distance. All simulations (both agent deploy-
ment and intercepting threats) are performed in discrete
time with a sampling time interval γ = 0.05 s.

5.1. Deployment

The optimal coverage of the agents’ nonuniform deploy-
ment in the harbor is illustrated by simulating a 2D in-
ner reaction zone of the harbor with its boundary vertices
at (0.02, 0.02), (1.2, 0.2), (2, 0), (2.2, 1), (2, 2.5), (0.6, 2.7),
(0, 2), (0.05, 1.6), and (0, 1) km. The distribution of risk
zones throughout the harbor is given by (3), where the
highest risk is in the region centered around (x̄, ȳ) with
σx = 0.6 km and σy = 0.4 km. It implies that threats can
enter most-likely through regions centered around (x̄, ȳ) =
(1.5, 0.2), (0.4, 0.15), (1.2, 2.5) km. Initially, 15 (n = 15)
agents (hollow arrows with unique IDs i = 1, . . . , 15) are
placed close to the high value unit located at the middle of
the left side of the harbor. The heading direction of each
agent is toward the centroid of its corresponding Voronoi
partition as computed by (5). The colormap on the right
of Fig. 2 shows corresponding value of the risk level in the
harbor, where 0 (zero) and 1 (one) correspond to lowest
and highest risk level, respectively.

The evolution of agents’ network at time t ∈ [0, 60] s
is determined through models (1) and (11) for i = 1, . . . , n,
and κ = 1. Their corresponding total coverage is computed
by the coverage metric given in (6). The optimal configu-
ration of the agents in total readiness time 60 s is revealed
in Fig. 2 with the maximum coverage by the agents. Fig. 3
shows the normalized total coverage. The agents yields the
maximum coverage of the harbor, which corresponds to
unity (see Fig. 3). As expected, agents speeds decreasing
while they move towards their optimal configurations. This
model naturally leads to nonuniform deployment as dic-
tated by the risk function, with higher risk zones more
densely populated than lower risk zones. Nine agents are
densely placed close to the harbor entrance and six agents
are deployed from across the harbor entrance since there is
a high probability of entering threats from these locations
of the harbor.

5.2. Intercepting Threats

Assume that the agents are in optimal configurations as
shown in Fig. 2(b). Here we show how the agent 14, for
instance, intercepts a threat using its optimal acceleration
inputs α[14] that minimize the actuating energy modeled

by the cost function (A.1) while maintaining its safe stand-
off distance. Since the harbor area that we have chosen is
in the range of kilometer, for the purpose of showing the
trajectory in meters we magnify the Voronoi cell of agent
14. For the proof of concept, we assume that the agent 14 is
initially placed in the optimal loiter position (60 m, 10 m)
in the inner reaction zone of the harbor. An alert has been
sent to all agents that a threat is heading from the posi-
tion (98,−8) m towards the high value unit with an initial
velocity of 1.2 m·s−1 (≈ 2.3 kn). Since the threat will surely
be entering through Voronoi cell of agent 14, the agent 14
moves according to the kinematic model (18), where its
acceleration inputs are computed by (A.8). Figs. 4(a) and
4(b) show their initial positions and velocities, respectively.
The agent is always pointed towards the threat. The initial
position error is about 42 m as shown in Fig. 5. Since the
agent has to intercept the threat before it reaches the high
value unit, it drastically increased the speed to ≈ 2.7 m·s−1

(≈ 5.2kn) in about 4 s as shown in Fig. 4(b). Once the
agent’s position is about 15 m (safe stand-off distance, rw)
away from the threat, it maintains the same speed as the
threat. This is clear from Fig. 5.

One important observation that can be made from this
simulation results is that if the threat’s speed is about 4 kn
and it is initially about 42 m away from the agent, then it
can intercept the threat in about 10 s and start engaging
with its available weapons, for instance.

6. Summary and Conclusion

In this paper, we focus on an optimal deployment of mul-
tiple autonomous agents with the purpose of protecting a
high value unit against multiple attacks in a harbor-like
environment. A nonuniform risk distribution function is as-
signed to the area to be protected and agents are optimally
distributed throughout the harbor to maximize a gener-
alized coverage metric that encodes the non uniform risk
distribution and the performance of sensory devices in de-
tecting events in the area where they are deployed. The
coverage metric is maximized along the trajectories gener-
ated by a feedback law with kinematic actuating actions.
Agents are deployed more (less) densely in higher (lower)
risk zones using Voronoi tessellation. Once threats pene-
trate the underwater barrier, the mobile agents are notified
to intercept them. If a threat reaches in one of the Voronoi
cells, the corresponding agent estimates the threat’s posi-
tion and velocities and intercept it in pre-specified reaction
time. This is performed using the extended Kalman filter
and the optimal linear quadratic control technique, which
minimizes the agent’s actuator energy that need to be ap-
plied to intercept the threat in its Voronoi cell.

Even though the current work focused in deploying
agents patrolling in a harbor protection environment, the
theoretical results are applicable to a general class of cov-
erage optimization problems, such as nonuniform distribu-
tion of food supply among a group of animals, collecting
scientific data in an underwater environment, and optimal
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Fig. 2. Nonuniform coverage: agents’ optimal configurations; colorbar represents risk level inside harbor
.
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Fig. 3. Performance of the agents’ nonuniform deployment.

configurations of a team of agents for estimating a target
location.

The current harbor protection scenario assumes that
agents are able to communicate among them perfectly
(noise-free) without any information loss. However, this is
not the case when a harbor contains islands or obstacles
yielding intermittent communications among agents while
accomplishing their missions. The optimal deployment of
agents in the presence of such intermittent communications
still remains a significant challenge and is a potential future

research avenue, which is currently under investigation.
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Appendix A Generating Optimal Acceleration In-
puts for ith Agent
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In this section, we will derive the optimal accelera-
tion inputs αi[k], k = 0, . . . , kf − 1, for the ith,i = 1, . . . , n,
agent to intercept a threat within the reaction time tr. We
denote tk = γk as the time at discrete index k and kf
corresponds to the reaction time tr through tr = γkf . For
clarity, we simply drop the superscript [i] and the subscript

+ from the error vector e
[i]
+ [k] and α̃ ≡ α̃[i] in the rest of

this section. We define ith agent’s cost function as

J(α̃) =
1

2
eT (tr)P(tr)e

T (tr)+

1

2

kf−1∑
k=0

∫ tk+1

tk

(
eT (t)Q(t)e(t) + α̃T (t)R(t)α̃(t)

)
dt, (A.1)

where P, Q ∈ R
4 are positive (semi) definite symmetric

matrices that represents the relative importance of position
and velocity error components between the agent and the
target. The matrix R is positive definite symmetric, which
imposes restriction on the amount of energy required for ac-
celeration inputs α[k] (in terms of propeller thrust forces,
for example). The objective at this stage is to minimize
the cost J(α̃) for the ith agent. Since the agent can esti-
mate the target’s position and acceleration (as illustrated
in section 4), the problem can be posed in terms of finding

α̃[k] ≡ α̃[i] that solves the following optimization problem:

inf
α̃k∈R2

J(α̃), (A.2)
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for k = 0, . . . , kf − 1.
The solution for α̃[k] of the problem (A.2) follows the

similar procedure illustrated in [60, Chapter 3]. We rewrite
the error (19) as

e(t) = Φ(t, tk)e[k] + Γ(t)α̃[k], (A.3)

for t ∈ (tk, tk+1] and Φ(t, tk) is the possible time–varying
state transition matrix. The cost functional (A.1) can be
written as

J(α̃) =
1

2
eT (tr)P(tr)e(tr)+

1

2

kf−1∑
k=0

∫ tk+1

tk

([
eT (t) α̃T (t)

] [Q(t) 0
0 R(t)

] [
e(t)
α̃(t)

])
dt.

(A.4)

By considering a discrete time implementation, for t ∈
[tk, tk+1], α̃[k] we approximate α̃ as constant, that is
(i.e., α̃(t) = α̃[k], for t ∈ [tk, tk+1]). With this assump-
tion and substituting e(t) from (A.3) in (A.4) yield

J(α̃) =
1

2
eT (tr)P(tr)e(tr) +

1

2

kf−1∑
k=0

∫ tk+1

tk

(

[
eT [k] α̃T [k]

] [ ΦTQΦ ΦTQΓ
(ΦTQΓ)T R+ ΓTQΓ

] [
e[k]
α̃[k]

])
dt,

(A.5)

with argument (t) dropped whenever no ambiguity arises.
Defining

Q̂k =

∫ tk+1

tk

ΦT (t, tk)Q(t)Φ(t, tk)dt,

M̂k =

∫ tk+1

tk

ΦT (t, tk)Q(t)Γ(t)dt,

R̂k =

∫ tk+1

tk

(
R(t) + ΓT (t)Q(t)Γ(t)

)
dt,

(A.6)

the quadratic cost-functional (A.5) can be written as

J(α̃) =
1

2
eTf Pfef+

1

2

kf−1∑
k=0

[
eTk α̃T

k

] [ Q̂k M̂k

M̂T
k R̂k

] [
ek
α̃k

]
dt,

(A.7)

where we have adopted the compact notation (·)f ≡ (·)(tr)
and (·)k ≡ (·)[k]. Given the agent’s linear error model (19)
and its quadratic cost functional given by (A.1), the agent’s
optimal acceleration error is given by the following linear-
quadratic state feedback control law

α̃k = −Ckek = −
(
R̂k + ΓT

kPk+1Γk

)−1

(
M̂T

k + ΓT
kPk+1Φk

)
ek.

(A.8)

whereCk is the (2×4) optimal feedback gain matrix andPk

is the solution of the following discrete-time matrix Riccati
equation

Pk = Q̂k +ΦT
kPk+1Φk −

(
M̂k +ΦT

kPk+1Γk

)
(
R̂k + ΓT

kPk+1Γk

)−1 (
M̂T

k + ΓT
kPk+1Φk

) (A.9)

with Pk+1 = P[kf ] � Pf .
For the agent to maintain a safe stand-off dis-

tance, the error vector ek, in (19) is replaced by ek +
[rw cos(π/4), rw cos(π/4), 0, 0]T , where rw is the agent’s safe
stand-off distance. The derivation of (A.8) and (A.9) fol-
low from [60, Chapter 3]. The following steps summarize
the determination of the ith agent trajectory using optimal
acceleration inputs α[i][k]:

Step 1: Define Q(t), R(t), and P(tr) for the cost func-
tion (A.1).

Step 2: Compute Q̂k, M̂k, and R̂k using (A.6).
Step 3: Compute the matrix Pk backward using the
discrete-time matrix Riccati equation (A.9).
Step 4: Compute α̃k ≡ α̃[k] using the control law (A.8).
Step 5: Compute the agent’s optimal acceleration inputs
by α[i][k] = α̃[k] +α[k], where α[k] is the targets acceler-
ation input (assumed to be known).
Step 6: Generate agent’s state (position and velocity) tra-
jectory by (18).

References

[1] V. Sarma and S. Raju, Multisensor data fusion and de-
cision support for airborne target identification, IEEE
Transactions on Systems Man and Cybernetics 21
(SEP-OCT 1991) 1224–1230.

[2] M. E. Liggins II, C.-Y. Chong, I. Kadar, M. G. Alford,
V. Vannicola and S. Thomopoulos, Distributed fusion
architectures and algorithms for target tracking, Pre-
ceedings of the IEEE 85 (January 1997) 95–107.

[3] T. H. Chung, J. W. Burdick and R. M. Murray, Decen-
tralized motion control of mobile sensing agents in a
network, Proceedings of the IEEE International Con-
ference on Robotics and Automation, Orlando, Florida
(May 2006).

[4] T. H. Chung, V. Gupta, J. W. Burdick and R. M. Mur-
ray, On a decentralized active sensing strategy using
mobile sensor platforms in a network, Proceedings of
the IEEE conference on Decision and Control , Par-
adise Island, Bahamas (December 2004).

[5] S. Mart́ınez and F. Bullo, Optimal sensor placement
and motion coordination for target tracking, Automat-
ica 42(4) (2006) 661–668.

[6] P. Yang, R. A. Freeman and K. M. Lynch, Multi-
Agent Coordination by Decentralized Estimation and
Control, IEEE Transactions on Automatic Control 53
(Dec 2008) 2480–2496.

  DRDC-RDDC-2014-P78 



Nonuniform Deployment of Autonomous Agents in Harbor-Like Environments 11

[7] Z. Tang and U. Ozguner, Cooperative sensor deploy-
ment for multi-target monitoring, International Jour-
nal of Robust and Nonlinear Control 18 (Jan 2008)
196–217.

[8] G. Shi and Y. Hong, Global target aggregation and
state agreement of nonlinear multi-agent systems
with switching topologies, Automatica 45 (May 2009)
1165–1175.

[9] Z. Wang and D. Gu, Cooperative Target Tracking
Control of Multiple Robots, IEEE Transactions on In-
dustrial Electronics 59 (Aug 2012) 3232–3240.

[10] C. Zhang and S. Fei, Energy efficient target tracking
algorithm using cooperative sensors, Journal of Sys-
tems Engineering and Electronics 23 (Oct 2012) 640–
648.

[11] H. S. Ramos, A. Boukerche, R. W. Pazzi, A. C. Frery
and A. A. F. Loureiro, Cooperative target tracking in
vehicular sensor networks, IEEE Wireless Communi-
cations 19 (Oct 2012) 66–73.

[12] Y.-C. Chen and C.-Y. Wen, Decentralized Cooperative
TOA/AOA Target Tracking for Hierarchical Wireless
Sensor Networks, Sensors 12 (Nov 2012) 15308–15337.

[13] L. Ma and N. Hovakimyan, Vision-Based Cyclic Pur-
suit for Cooperative Target Tracking, Journal of Guid-
ance Control and Dynamics 36 (Mar-Apr 2013) 617–
622.

[14] C. Belta and V. Kumar, Abstraction and control for
groups of robots, IEEE Transactions on Robotics 20
(October 2004) 865–875.

[15] P. Ogren, E. Fiorelli and N. Leonard, Cooperative
control of mobile sensor networks: Adaptive gradient
climbing in a distributed environment, IEEE Transac-
tions on Automatic Control 49 (Aug 2004) 1292–1302.

[16] J. Cortés, S. Mart́ınez, T. Karatas and F. Bullo,
Coverage control for mobile sensing networks, IEEE
Transactions on Robotics and Automation 20(2)
(2004) 243–255.

[17] F. Lekien and N. E. Leonard, Nonuniform coverage
and cartograms, SIAM Journal on Control and Opti-
mization 48(1) (2009) 351–372.

[18] J. A. Fax and R. M. Murray, Information flow and co-
operative control of vehicle formations, IEEE Trans-
actions on Automatic Control 49 (September 2004)
1465–1476.

[19] R. A. Freeman, P. Yang and K. M. Lynch, Distributed
estimation and control of swarm formation statistics,
Proceedings of the American Control Conference, Min-
neapolis, Minnesota USA (June 14-16 2006), pp. 749–
755.

[20] K. Laventall and J. Cortés, Coverage control by multi-
robot networks with limited-range anisotropic sensory,
International Journal of Control 82(6) (2009) 1113–
1121.

[21] A. Jadbabaie, J. Lin and A. Morse, Coordination of
groups of mobile autonomous agents using nearest
neighbor rules, IEEE Transactions on Automatic Con-
trol 48 (Jun 2003) 988–1001.

[22] W. Ren and E. Atkins, Distributed multi-vehicle co-

ordinated control via local information exchange, In-
ternational Journal of Robust and Nonlinear Control
17 (Jul 2007) 1002–1033.

[23] Y. Cao and W. Ren, Multi-vehicle coordination
for double-integrator dynamics under fixed undi-
rected/directed interaction in a sampled-data setting,
International Journal of Robust and Nonlinear Con-
trol 20 (Jun 2010) 987–1000.

[24] A. Kansal, W. Kaiser, G. Pottie, M. Srivastava and
G. Sukhatme, Reconfiguration methods for mobile
sensor networks, ACM Transactions on Sensor Net-
works 3 (Oct 2007).

[25] Y. Zou and P. R. Pagilla, Distributed Constraint
Force Approach for Coordination of Multiple Mobile
Robots, Journal of Intelligent & Robotic Systems 56
(Sep 2009) 5–21.

[26] R. Carli and F. Bullo, Quantized coordination algo-
rithms for rendezvous and deployment, SIAM Journal
on Control and Optimization 48(3) (2009) 1251–1274.

[27] P. Ögren, E. Fiorelli and N. E. Leonard, Cooperative
control of mobile sensor networks: Adaptive gradient
climbing in a distributed environment, IEEE Transac-
tions on Automatic Control 49(8) (2004) 1292–1302.

[28] M. Porfiri, D. G. Roberson and D. J. Stilwell, Track-
ing and formation control of multiple autonomous
agents: A two-level consensus approach, Automatica
43(8) (2007) 1318–1328.

[29] S. Simic and S. Sastry, Distributed environmental
monitoring using random sensor networks, Proceed-
ing of the 2nd International Workshop on Information
Processing in Sensor Networks , Palo Alto, CA (2003),
pp. 582–592.

[30] S. Susca, F. Bullo and S. Martinez, Monitoring envi-
ronmental boundaries with a robotic sensor network,
IEEE Transactions on Control Systems Technology 16
(Mar 2008) 288–296.

[31] K. R. Guruprasad and D. Ghose, Heterogeneous loca-
tional optimization using a generalized voronoi parti-
tion, International Journal of Control 86 (April 2013)
977–993.

[32] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and
E. Cayirci, Wireless sensor networks: a survey, Com-
puter Networks 38 (2002) 393–422.

[33] J. Yick, B. Mukherjee and D. Ghosal, Wireless sen-
sor network survey, Computer Networks 52(12) (2008)
2292 – 2330.

[34] Y. Cao, W. Yu, W. Ren and G. Chen, An Overview
of Recent Progress in the Study of Distributed Multi-
Agent Coordination, IEEE Transactions on Industrial
Informatics 9 (Feb 2013) 427–438.

[35] W. Ren and Y. Cao, Distributed Coordination of
Multi-agent Networks: Emergent Problems, Models,
and IssuesCommunications and Control Engineering,
Communications and Control Engineering (Springer-
Verlag, London, 2011).

[36] M. Vego, Harbour protection, Naval Forces 28(3)
(2007) 9–20.

[37] I. V. Belykh, V. N. Belykh and M. Hasler, Blinking

  DRDC-RDDC-2014-P78 



12 S. Miah, B. Nguyen, A. Bourque, D. Spinello

model & synchronization in small-world networks with
a time-varying coupling, Physica D 195 (Aug 2004)
188–206.

[38] M. Porfiri, Stochastic synchronization in blinking net-
works of chaotic maps, Phys. Rev. E 85 (May 2012)
p. 056114.

[39] M. Porfiri, A master stability function for stochas-
tically coupled chaotic maps, Europhys. Lett. 96(4)
(2011) p. 40014.

[40] N. Abaid and M. Porfiri, Leader-follower consensus
over numerosity-constrained random networks., Auto-
matica 48(8) (2012) 1845 – 1851.

[41] N. Abaid, I. Igel and M. Porfiri, On the consensus
protocol of conspecific agents, Linear Algebra Appl.
437(1) (2012) 221 – 235.

[42] N. Abaid and M. Porfiri, Consensus over numerosity-
constrained random networks, IEEE Trans. on Au-
tom. Control 56 (March 2011) 649–654.

[43] S. Kar and J. M. F. Moura, Distributed Consensus
Algorithms in Sensor Networks With Imperfect Com-
munication: Link Failures and Channel Noise, IEEE
Trans. on Signal Process. 57 (Jan 2009) 355–369.

[44] S. Silva Pereira and A. Pages-Zamora, Mean Square
Convergence of Consensus Algorithms in Random
WSNs, IEEE Trans. on Signal Process. 58 (May 2010)
2866–2874.

[45] H. Yip, B. Nguyen, P. Grignan and Vermeij, Model-
ing and analysis for harbour protection against under-
water terrorist attacks, Technical Report NURC-FR-
2008-007, NATO Undersea Research Center (NURC)
(2008).

[46] R. T. Kessel and R. D. Hollett, Underwater intruder
detection sonar for harbour protection: State of the
art review and implications, IEEE International Con-
ference on Technologies for Homeland Security and
Safety , (Ft. Belvoir Defense Technical Information
Center OCT, Istanbul, Turkey, oct. 2006).

[47] A. Caiti, V. Morellato and A. Munafo, GIS-based per-
formance prediction and evaluation of civilian harbour
protection systems, OCEANS – Europe, Aberdeen
(June 2007), pp. 1–6.

[48] R. T. Kessel, Protection in ports: countering underwa-
ter intruders, UDT Europe, Undersea Defence Tech-
nology Europe, Naples (5–7, June 2007).

[49] A. Burkle and B. Essendorfer, Maritime surveillance

with integrated systems, International Waterside Se-
curity Conference, Carrara, Italy (November 2010),
pp. 1–8.

[50] E. Simetti and M. Cresta, Towards the use of a team
of USVs for civilian harbour protection: the problem
of intercepting detected menaces, OCEANS, IEEE -
Sydney , Sydney, NSW (May 2010), pp. 1–7.

[51] B. Nguyen and H. Yip, A stochastic model for lay-
ered defense: Ballistic missile defense and harbour pro-
tection, International Waterside Security Conference,
Carrara, Italy (3–5 November 2010), pp. 1–8.

[52] C. Strode, D. Cecchi and V. Calabro, Simulation of
a system of systems to protect high value assets from
surface and underwater terrorist attack, Undersea De-
fence Technology (UDT) Europe, Cannes (June 2009).

[53] F. Bullo, J. Cortes and S. Martinez, Distributed Con-
trol of Robotic Networks: A Mathematical Approach
to Motion Coordination Algorithms (Princeton Uni-
versity Press, Applied Mathematics Series, 2009).

[54] M. S. Miah, Design and implementation of control
techniques for differential drive mobile robots: An rfid
approach, PhD dissertation, School of Electrical Engi-
neering and Computer Science, University of Ottawa
(October 2012).

[55] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu,
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, second edn. (John Wiley & Sons,
LTM, 2000).

[56] F. Lekien and N. E. Leonard, Nonuniform coverage
and cartograms, SIAM Journal of Control and Opti-
mization 48 (February 2009) 351–372.

[57] S. P. Lloyd, Least squares quantization in PCM, IEEE
Transactions on Information Theory 28 (1982) 129–
137.

[58] J. Cortes, S. Martinez, T. Kartas and F. Bullo, Cover-
age control for mobile sensing networks, IEEE Trans-
actions on Robotics and Automation 20 (April 2004)
243–255.

[59] M. S. Miah and W. Gueaieb, A stochastic approach
of mobile robot navigation using customized rfid sys-
tems, International Conference on Signals, Circuits
and Systems, Jerba, Tunisia (November 2009).

[60] R. F. Stengel, Optimal Control and Estimation (Dover
publications, inc., New York, 1994).

  DRDC-RDDC-2014-P78 


